# Magic
# 初始化配置
# 导入依赖
<dependency>
<groupId>com.github.yuyenews</groupId>
<artifactId>Magic</artifactId>
<version>1.0.0</version>
</dependency>
# 并发处理任务
MagicDataProcessing.getConcurrentTaskSync()
.setTimeout(1000) // 超时时间
.setTimeUnit(TimeUnit.MILLISECONDS) // 超时时间的单位
.add(() -> { // 添加一个任务
// 在这里可以写上任务的业务逻辑
}, (result, e) -> {
// 此任务处理后的回调
if(result.equals(ConcurrentTaskResultEnum.FAIL)){
// 任务失败,此时e里面有详细的异常信息
} else if(result.equals(ConcurrentTaskResultEnum.SUCCESS)) {
// 任务成功,此时e是空的
}
})
.add(() -> { // 添加一个任务
// 在这里可以写上任务的业务逻辑
}, (result, e) -> {
// 此任务处理后的回调
if(result.equals(ConcurrentTaskResultEnum.FAIL)){
// 任务失败,此时e里面有详细的异常信息
} else if(result.equals(ConcurrentTaskResultEnum.SUCCESS)) {
// 任务成功,此时e是空的
}
})
.start();
添加进去的任务会并发执行,但是在它们执行完之前,这整个代码块会同步等待在这,一直等到所有任务执行完或者超时才会继续往下走。
这里面的超时时间就是用来设置同步等待多久的。
- 如果设置为0表示一直等到所有任务完成为止
- 设置为大于0的时候,表示只等待这么久
# 并发处理List,Set等所有Collection类的集合里的元素
# 同步执行
假如有一个List需要并发处理里面的元素
List<String> dataList = new ArrayList<>();
只需要将他传入syncRunner方法即可
MagicDataProcessing.getConcurrentCollectionSync()
.syncRunner(dataList, data -> {
// 这里可以拿到List里的元素,进行处理
// List里的元素是什么类型,这个data就是什么类型
System.out.println(data);
},
10, // 每组多少条元素
1, // 每组之间同步等待多久
TimeUnit.MINUTES // 等待的时间单位
);
这个方法会将传进去的集合分成若干组,每组的大小由参数指定。
这些组会排队执行,但是每一组在执行的时候都是并发的,里面的每一个元素都会由单独的线程去处理。
需要等一组处理完了,才会处理下一组,但是有时候我们不想这么死板的等待,所以可以设置一个超时时间,超过了这个期限就不等了,直接进行下一组,所以这里的最后两个参数就是用来设置这个期限的。
# 也可以让每一组单独占一个线程
// 也可以用syncGroupRunner方法
MagicDataProcessing.getConcurrentCollectionSync()
.syncGroupRunner(dataList, data -> {
// 这里是每一组List
for(String item : data){
// 这里可以拿到List里的元素,进行处理
System.out.println(data);
}
},
10, // 每组多少条元素
1, // 每组之间同步等待多久
TimeUnit.MINUTES // 等待的时间单位
);
这个方法会将传进去的集合分成若干组,每组的大小由参数指定。
每一组由单独的线程处理。
会一直同步等待在这里,直到所有组都处理完了才会进行下一步,但是有时候我们不想这么死板的等待,所以可以设置一个超时时间,超过了这个期限就不等了,直接执行下一步。所以这里的最后两个参数就是用来设置这个期限的。
# 异步执行
其实就是将上面【同步执行】的代码放到了一个线程里,内部处理依然是上面【同步执行】的逻辑,但是这整个代码块将会异步执行,不需要等在这。所以个别相同的参数就不再重复解释了。
// 假如有一个List需要并发处理里面的元素
List<String> dataList = new ArrayList<>();
# 每个元素并发执行
// 只需要将他传入asyncRunner方法即可
MagicDataProcessing.ConcurrentCollectionAsync().asyncRunner(dataList, data -> {
// 这里可以拿到List里的元素,进行处理
System.out.println(data);
},
10, // 每组多少条元素
1, // 每组之间同步等待多久
TimeUnit.MINUTES // 等待的时间单位
)
.start();// 注意,异步执行需要调用start方法
还可以这样写
MagicDataProcessing.ConcurrentCollectionAsync().asyncRunner(dataList, data -> {
// 这里是每一组List
for(String item : data){
// 这里可以拿到List里的元素,进行处理
System.out.println(data);
}
},
10, // 每组多少条元素
1, // 每组之间同步等待多久
TimeUnit.MINUTES // 等待的时间单位
).asyncRunner(dataList2, data -> {
// 这里可以拿到List里的元素,进行处理
System.out.println(data);
},
10, // 每组多少条元素
1, // 每组之间同步等待多久
TimeUnit.MINUTES // 等待的时间单位
).asyncRunner(dataList3, data -> {
// 这里可以拿到List里的元素,进行处理
System.out.println(data);
},
10, // 每组多少条元素
1, // 每组之间同步等待多久
TimeUnit.MINUTES // 等待的时间单位
)
.start(); // 一样要调用start方法
# 每一组并发执行
// 也可以用asyncGroupRunner方法,每个参数的具体含义可以参考文档
MagicDataProcessing.ConcurrentCollectionAsync().asyncGroupRunner(dataList, data -> {
// 这里是每一组List
for(String item : data){
// 这里可以拿到List里的元素,进行处理
System.out.println(data);
}
},
10, // 每组多少条元素
1, // 每组之间同步等待多久
TimeUnit.MINUTES // 等待的时间单位
)
.start(); // 一样要调用start方法
同上
# 并发处理所有Map类的集合里的元素
Map的逻辑跟Collection一模一样,只不过是传入的集合变成了Map,就不再累述了,感谢理解。
# 同步执行
# 每个元素并发执行
// 假如有一个Map需要并发处理里面的元素
Map<String, Object> dataMap = new HashMap<>();
// 只需要将他传入syncRunner方法即可
MagicDataProcessing.getConcurrentMapSync()
.syncRunner(dataMap, (key, value) -> {
// 这里可以拿到Map里的元素,进行处理
System.out.println(key);
System.out.println(value);
}, 10, 1, TimeUnit.MINUTES);
# 每一组并发执行
// 也可以用syncGroupRunner方法
MagicDataProcessing.getConcurrentMapSync()
.syncGroupRunner(dataMap, data -> {
// 这里是每一组Map
for(Map.Entry<String, Object> entry : data.entrySet()){
// 这里可以拿到Map里的每一个元素
System.out.println(entry.getKey());
System.out.println(entry.getValue());
}
}, 10, 1, TimeUnit.MINUTES);
# 异步执行
# 每个元素并发执行
// 假如有一个Map需要并发处理里面的元素
Map<String, Object> dataMap = new HashMap<>();
// 只需要将他传入asyncRunner方法即可
MagicDataProcessing.getConcurrentMapAsync().asyncRunner(dataMap, (key, value) -> {
// 这里可以拿到Map里的元素,进行处理
System.out.println(key);
System.out.println(value);
},
10,
1,
TimeUnit.MINUTES
)
.start(); // 一样要调用start方法
# 每一组并发执行
// 也可以用asyncGroupRunner方法
MagicDataProcessing.getConcurrentMapAsync().asyncGroupRunner(dataMap, data -> {
// 这里是每一组Map
for(Map.Entry<String, Object> entry : data.entrySet()){
// 这里可以拿到Map里的每一个元素
System.out.println(entry.getKey());
System.out.println(entry.getValue());
}
},
10,
1,
TimeUnit.MINUTES
)
.start(); // 一样要调用start方法;
# 生产者与消费者
这是一个多对多的模型,多个生产者可以给多个消费者推送不同类型的数据,
# 我们先创建一个生产者
public class DemoProducer extends MagicProducer {
/**
* 设置ID,必须全局唯一,默认是当前类的全名
* 如果采用默认值,可以不重写这个方法
* @return
*/
@Override
public String getId() {
return super.getId();
}
/**
* 设置producer方法是否重复执行,默认重复
* 如果采用默认值,可以不重写这个方法
* @return
*/
@Override
public boolean getLoop() {
return super.getLoop();
}
/**
* 设置 是否等消费者全部空闲了才继续生产下一轮数据,默认false
* 如果采用默认值,可以不重写这个方法
* @return
*/
@Override
public boolean getAllFree() {
return super.getAllFree();
}
/**
* 当生产者启动后,会自动执行这个方法,我们可以在这个方法里生产数据,并通过publish方法发布给消费者
*
* 这边举一个例子
* 假如我们需要不断地扫描某张表,根据里面的数据状态去执行一些业务逻辑
* 那么我们可以在这个方法里写一个查询的逻辑,然后将查询到数据发送给消费者
*/
@Override
public void producer() {
// 根据上面的例子,我们可以查询这张表里符合条件的数据
List<Object> dataList = selectList();
// 然后将他推送给消费者
// 可以推送任意类型的数据
this.publish(dataList);
/*
* 如果你只需要执行一次,那么到此就结束了,这个生产者也可以被回收掉了
*
* 但是如果你需要不断地执行上述操作,来维护这张表里的数据,这个时候你有两种做法
* 第一种:加一个while循环
* 但是这种方式有个问题,如果消费者的消费速度跟不上,那么就很容易造成消费者队列积压,出现内存问题。
* 而数据积压太久又会影响时效性,可能你推送给消费者的时候,这条数据需要处理,但是等到被消费的时候又不需要处理了,这样容易出现数据错乱的问题。
*
* 第二种:等消费者把你推给他的数据消费完了,再推送下一轮,而我们就是采用的这种
* 如果你想用这种方式,那么你不需要再写其他的任何逻辑,只需要将上面提到的getLoop方法重写一下,并返回true即可
* 当你设置为true以后,生产者在推送完一轮后会不断地监视消费者,当发现了空闲的消费者才会生产和推送下一轮数据,并且数据只会推送给这几个空闲的消费者
*
* 如果你想等所有消费者都空闲了以后再推送下一轮,而不是发现一个空闲的就推送一轮
* 那么你可以重写上面提到的getAllFree方法,返回true即可
*/
}
}
# 再创建一个消费者
public class DemoConsumer extends MagicConsumer {
/**
* 设置ID,必须全局唯一,默认是当前类的全名
* 如果采用默认值,可以不重写这个方法
* @return
*/
@Override
public String getId() {
return super.getId();
}
/**
* 心跳通知,消费者每消费一个任务,都会触发一下这个方法
* 我们可以根据他触发的频率来判断这个消费者的活跃度
*
* 注意!!!
* 这个方法里不可以有耗时的操作,不然会将消费者阻塞的
* 如果一定要加耗时的操作,那么务必在新线程里搞
* @param id
*/
@Override
public void pulse(String id) {
new Thread(()->{
// 如果你需要在这个方法里搞一些耗时的操作,那么务必要像这样开启一个新线程
// 不然消费者会被阻塞的
}).start();
}
/**
* 消费频率限制,默认10毫秒,取值范围:0 - long的最大值,单位:毫秒
*
* 如果任务执行的耗时小于execFrequencyLimit,则等待execFrequencyLimit毫秒后再消费下一个任务
*
* 首先这是一个生产者和消费者多对多的模型结构,我们以一个生产者对多个消费者来举例
* 生产者生产的数据只有一份,但是他会推送给多个消费者
* 而我们之所以要配置多个消费者,是因为需要他们执行不同的业务逻辑
* 多个消费者执行的业务逻辑不同,也就意味着他们需要的数据大概率会不同
*
* 比如消费者A需要处理男性的数据,消费者B需要处理女性的数据
* 如果生产者刚好连续推送了几批男性的数据,那么这会导致消费者B筛选不到女性数据,那么他就不会处理业务逻辑了
* 这么一来,消费者B就会无限接近空转,而空转会引起CPU占用率过大,所以必须加以限制
*
* 千万不要小看这个问题,本人曾经在实战中亲测过,做不做这个限制,CPU的占有率会达到10倍的差距
* 当然了,这跟消费者的业务逻辑还是有一定关系的,具体情况具体看待
* 如果你的消费者几乎不会出现空转,那么这里可以设置为0
*
*/
@Override
public long getExecFrequencyLimit() {
return super.getExecFrequencyLimit();
}
/**
* 这个方法会接收到生产者推送过来的数据
* 在里面执行相应的业务逻辑即可
* @param data
*/
@Override
public void doRunner(Object data) {
// data 可以是任何类型
// 因为能给他推送数据的消费者是固定的,所以data有可能收到的类型也是固定的
// 所以我们可以在这里自己判断,然后转化即可
// 为什么不用泛型?这是为了兼容多个生产者,因为他们推送的数据类型可能会不同
}
}
# 然后将他们添加到同一个组内
// 创建一组生产者与消费者,而这样组可以创建无限个
// 每一组的生产者都只会把数据推送给同一组的消费者
MagicDataProcessing.getProducerAndConsumerManager()
.addProducer(new DemoProducer()) // 添加一个生产者(可以添加多个)
.addConsumer(new DemoConsumer()) // 添加一个消费者(可以添加多个)
.start();
# 数据库操作
此组件重度依赖于SpringBoot,底层是基于JdbcTemplate的扩展,做到了单表操作不需要写SQL,天然支持MySql分页查询,支持在SQL中写入{属性名}占位符,如果你不想用SpringBoot但是又想使用这个组件,可以用Magician-JDBC
# 添加依赖
<!-- mysql driver package -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.20</version>
</dependency>
<!-- druid connection pool -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.2.5</version>
</dependency>
# 创建一个Spring的JdbcTemplate对象
@Resource
private JdbcTemplate jdbcTemplate;
# 单表无SQL操作
# 插入数据
ParamPO paramPO = new ParamPO();
paramPO.setUserName("a");
paramPO.setUserEmail("test@qq.com");
int result = MagicDBUtils.get(jdbcTemplate).insert("表名", paramPO);
# 修改数据
// 构建修改条件
ConditionBuilder conditionBuilder = ConditionBuilder.createCondition()
.add("id = ?", 10)
.add("and name = ?", "bee");
// 构建修改数据
ParamPO paramPO = new ParamPO();
paramPO.setUserName("a");
paramPO.setUserEmail("test@qq.com");
// 执行修改
int result = MagicDBUtils.get(jdbcTemplate).update("表名", paramPO, conditionBuilder);
# 删除数据
// 构建删除条件
ConditionBuilder conditionBuilder = ConditionBuilder.createCondition()
.add("id = ?", 10);
// 执行删除
int result = MagicDBUtils.get(jdbcTemplate).delete("表名", conditionBuilder);
# 查询数据
// 构建查询条件
ConditionBuilder conditionBuilder = ConditionBuilder.createCondition()
.add("id > ?", 10)
.add("and (name = ? or age > ?)", "bee", 10)
.add("order by create_time", Condition.NOT_WHERE);
// 执行查询
List<ParamPO> result = MagicDBUtils.get(jdbcTemplate).select("表名", conditionBuilder, ParamPO.class);
# 条件构造器说明
内部结构如下
public class Condition {
// 条件,可以是 where, order by, group by 等任意条件
private String key;
// 如果条件设置的是where条件,那么这个属性就需要设置成 条件的值
private Object[] val;
// 如果条件不是where,那么val就必须设置成这个常量
public static final String NOT_WHERE = "notWhere";
}
可以看如下示例
ConditionBuilder conditionBuilder = ConditionBuilder.createCondition()
// 这里key 设置成了where条件,所以val 就设置成了 where的值,也就是查询 id > 10 的数据
.add("id > ?", 10)
// 这里也一样的,是where条件,但是因为他是第二个条件,所以需要 在最前面加上and,or 等连接符
.add("and (name = ? or age > ?)", "bee", 10)
// 这是排序,所以 val需要设置成 Condition.NOT_WHERE
.add("order by create_time", Condition.NOT_WHERE);
注:条件构造器只支持 ? 占位符
# 自定义sql
# 增删改
ParamPO paramPO = new ParamPO();
paramPO.setUserName("testTx222");
paramPO.setUserEmail("testTx222@qq.com");
paramPO.setId(4);
// 采用{}占位符的写法
int result = MagicDBUtils.get(jdbcTemplate).exec("update xt_message_board set user_name = {user_name} , user_email = {user_email} where id = {id}", paramPO);
// 采用 ? 占位符的写法
int result = MagicDBUtils.get(jdbcTemplate).exec("update xt_message_board set user_name = ? , user_email = ? where id = ?", new Object[]{"testTx222","testTx222@qq.com", 4});
# 查询数据
ParamPO paramPO = new ParamPO();
paramPO.setId(5);
paramPO.setUserName("a");
// 采用{}占位符的写法
List<ParamPO> result = MagicDBUtils.get(jdbcTemplate).selectList("select * from xt_message_board where id > {id} and user_name != {user_name}", paramPO, ParamPO.class);
// 采用 ? 占位符的写法
List<ParamPO> result = MagicDBUtils.get(jdbcTemplate).selectList("select * from xt_message_board where id > ? and user_name != ?", new Object[]{5, "a"}, ParamPO.class);
# 分页查询
// 查询条件
ParamPO paramPO = new ParamPO();
paramPO.setId(5);
paramPO.setUserName("a");
// 查询参数
PageParamModel pageParamModel = new PageParamModel();
pageParamModel.setCurrentPage(1);
pageParamModel.setPageSize(10);
pageParamModel.setParam(paramPO);
// 使用默认countSql查询
PageModel<ParamPO> pageModel = MagicDBUtils.get(jdbcTemplate).selectPage("select * from xt_message_board where id > {id} and user_name != {user_name}", pageParamModel, ParamPO.class);
// 使用自定义countSql查询
String countSql = "自己定义countSql";
PageModel<ParamPO> pageModel = MagicDBUtils.get(jdbcTemplate).selectPageCustomCountSql("select * from xt_message_board where id > {id} and user_name != {user_name}", countSql, pageParamModel, ParamPO.class);
# 实体映射
完全用的是Jackson的那一套的注解
@JsonIgnoreProperties(ignoreUnknown = true)
public class TestPO{
@JsonProperty(value = "数据库里的name字段名")
private String name;
@JsonProperty(value = "数据库里的age字段名")
private String age;
@JsonProperty(value = "数据库里的id字段名")
private int id;
@JsonProperty("create_time")
@JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss")
private Date createTime;
}
# 属性文件读取
# 加载配置文件
目前只支持 properties文件,你可以在任意目录下创建,然后使用以下方式将文件加载到项目中
从本机任意目录加载
// 必须写文件的绝对路径
MagicProperties.load("/home/xxx/application.properties", ReadMode.LOCAL, "UTF-8");
从当前项目的资源目录下加载
// 类资源下的文件的路径
MagicProperties.load("/application.properties", ReadMode.RESOURCE, "UTF-8");
从远程目录加载
// 远程文件路径, 只支持http协议
MagicProperties.load("https://www.test.com/application.properties", ReadMode.REMOTE, "UTF-8");
# 根据key获取value
// 如果配置文件里有userName这个key,那么就会直接使用,如果没有 那么会去环境变量读取
String userName = MagicProperties.get("userName");
# 遍历所有的key -> value
此法只能遍历文件有的配置项,获取不到环境变量
MagicProperties.forEach((key, value)->{
System.out.println(key);
System.out.println(value);
});